

Educational robot created to learn and teach industrial robots programming

How about...

making a revolution and teaching robotics in a completely new way?

Revolution in industrial robotics education Invented, designed and manufactured in Poland

Kawasaki Robotics ASTORINO allows robotics to be taught at universities at a level previously unattainable. We change the availability ratio from 15 students per 1 robot, to 2-3 students per 1 robot.

– Marek Niewiadomski

Inventor and constructor of Kawasaki Robotics ASTORINO robots

Students get the opportunity to learn robotics in a practical and safe way towards real applications in industry. By investing in this solution, the university is raising the quality of industrial robotics teaching and thus its prestige.

– Andrzej Garbacki

Robotics Department Director, ASTOR

LL

As an Automation and Robotics student, I must admit that Kawasaki Robotics ASTORINO is a great initiative that was much needed. Each student can touch and program such a robot!

– Michał Styś

Graduate of Automation and Robotics at AGH University of Science and Technology (Krakow, Poland)

Which option do you choose?

→ Low purchase cost

→ Safe

- → Does not teach solutions used in industry
- → Does not prepare students for work in production plants / engineering companies

- → High purchase cost
- → Requires additional safety
- → Teaches solutions used in industry
- → Prepares students for work in production plants / engineering companies

Become the university of the 21st century.

Be the catalyst for a revolution in industrial robotics education.

Create a lab that is:

- 1. modernly equipped and each student has his/her own robot,
- 2. cost-effective,
- 3. safe and user-friendly.

Technical data

and in addition...

- \rightarrow has relatively low purchase costs
- \rightarrow does not require additional safety systems
- \rightarrow teaches solutions used in industry
- \rightarrow prepares students for work in production plants / engineering companies

000					

3D printing – 99.5%*

The exception is the mechanical part [e.g. servo systems].

Delivery time – 6 weeks

Durable packaging will ensure that the package safely reaches its destination

Compatible with Kawasa Robotics industrial robot

The same robot programming language

Simple to operate and repair

Quickly replenish your inventory with parts printed on a 3D printer

Technical data

- → Gears with backlash of < 5 arcmin
- → Repeatability +/-0.5 mm
- → PET-G filament
- → 600 MHz CPU
- \rightarrow JT4 and JT6mm through axles
- → 8 I/O 3.3 V module

Robot arm	axis	range	speed [°/s]
parameters	JT1	-158.5÷158.5	40
	JT2	-90.0÷127.0	40
	JT3	0.0÷179.5	56
	JT4	-240.0÷240.0	120
	JT5	-120.0÷120.0	127.5
	JT6	-360.0÷360.0	195
Payload	0.5 kg		

Operating area

Basic features

- → Robot with 6 degrees of freedom
- → Robot design based on 3D printing – PET-G filament
- → Programming in AS-Language
- → Stepper motors operating in closed loop control,
- → Zeroing of axes required after switching off the power supply: no brakes on the axes (brakes as an option)
- → STL files supplied with the robot for self-repair/ printing of damaged parts

Expand your robot and create a robot kit

Where did the idea for creating Kawasaki Robotics ASTORINO come from?

I couldn't find such a robot, so I've invented one... to ensure that learning is inspiring, great fun and a pathway to the profession of the future.

Marek Niewiadomski

Inventor and constructor of Kawasaki Robotics ASTORINO

Want to learn more about the history of Kawasaki Robotics ASTORINO?

Visit www.kawasakirobotics.de/kr-astorino and find out more

Ask about the offer

Kawasaki Robotics Central and Eastern Europe HUB

3, Feliksa Wrobela St., 30-798 Krakow, Poland +48 12 306 73 40 ceehub@kawasakirobotics.pl www.kawasakirobotics.pl

Feel free to contact us!

astorino Kawasaki Robotics

Kawasaki Robotics GmbH Im Taubental 32 • 41468 Neuss www.kawasakirobotics.de/astorino

© All rights reserved Kawasaki Robotics GmbH Invented, designed and manufactured in Poland.